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ABSTRACT

Thousands of novel transcripts have been identified
using deep transcriptome sequencing. This discovery
of large and ‘hidden’ transcriptome rejuvenates the
demand for methods that can rapidly distinguish
between coding and noncoding RNA. Here, we
present a novel alignment-free method, Coding
Potential Assessment Tool (CPAT), which rapidly rec-
ognizes coding and noncoding transcripts from a large
pool of candidates. To this end, CPAT uses a logistic
regression model built with four sequence features:
open reading frame size, open reading frame
coverage, Fickett TESTCODE statistic and hexamer
usage bias. CPAT software outperformed (sensitivity:
0.96, specificity: 0.97) other state-of-the-art alignment-
based software such as Coding-Potential Calculator
(sensitivity: 0.99, specificity: 0.74) and Phylo Codon
Substitution Frequencies (sensitivity: 0.90, specificity:
0.63). In addition to high accuracy, CPAT is approxi-
mately four orders of magnitude faster than Coding-
Potential Calculator and Phylo Codon Substitution
Frequencies, enabling its users to process thousands
of transcripts within seconds. The software accepts
input sequences in either FASTA- or BED-formatted
data files. We also developed a web interface for
CPAT that allows users to submit sequences and
receive the prediction results almost instantly.

INTRODUCTION

Although the human genome sequence was released a
decade ago, the role of functional noncoding RNAs

(ncRNAs) is much less understood compared with their
coding counterparts. Several previous studies have
demonstrated that the human genome is pervasively
transcribed (1-4), but thoroughly cataloging all the
RNA species (especially ncRNA) is challenging. Undi-
scovered ncRNAs might be rare, transient or beyond the
detection limits of conventional approaches. Furthermore,
ncRNAs also tend to be idiosyncratic to species and
tissues (5,6). Nevertheless, advances in RNA-Seq have
provided a new method of surveying the whole transcrip-
tome to an unprecedented degree. Recent genome-wide
studies revealed tens of thousands of novel transcripts,
the majority of which were long noncoding RNAs
(IncRNAs, >200nt) (4-9). Although a few dozen
IncRNAs have been characterized to some extent and
are reported to have critical roles in diverse cellular and
disease development processes (6,10-14), the biogenesis
and function of most IncRNAs remain unclear.

Accurate and quantitative assessment of coding poten-
tial is the first step toward comprehensive annotation of
newly discovered transcripts. Until now, prediction of
coding potential heavily relied on sequence alignment,
either pairwise homology search for protein evidence
such as that used in the Coding-Potential Calculator
(CPC) and PORTRAIT methods (15,16) or multiple
alignments to calculate the phylogenetic conservation
score such as that used in the Phylogenetic Codon
Substitution Frequencies (PhyloCSF) and RNAcode
methods (17,18). Alignment-based approaches are par-
ticularly useful for highly conserved protein-coding
genes and, to a lesser extent, short genes encoding house-
keeping or regulatory RNAs (e.g. snRNAs, snoRNA,
transfer RNA). However, these approaches cannot imme-
diately apply to all the novel transcripts because of sev-
eral intrinsic limitations. First, most newly discovered

*To whom correspondence should be addressed. Tel: +1 507 538 8315; Fax: +1 507 284 0360; Email: kocher.jeanpierre@mayo.edu
Correspondence may also be addressed to Wei Li. Tel: +1 713 798 7854; Fax: +1 713 798 6822; Email: WLI(@bcm.edu

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

© The Author(s) 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



e74  Nucleic Acids Research, 2013, Vol. 41, No. 6

transcripts are IncRNAs, which tend to be lineage specific
and less conserved (5,6). This greatly limits the discrimin-
atory power of alignment-based methods. For example,
only 29 of 550 IncRNAs identified from zebrafish had de-
tectable sequence similarity with putative mammalian
orthologs (6), and only 993 of 8195 human IncRNAs
have orthologous transcripts in other species (5).
Second, considerable fractions of IncRNAs are overlapped
with either the sense or antisense strand of protein-coding
genes. These IncRNAs cannot be correctly classified by
homology searching because they would have significant
matches to protein-coding genes (3,8,19). Third, the reli-
ability of alignment-based approaches largely depends on
the quality of alignments (20). This is problematic because
most widely used multiple-sequence alignment tools use
heuristics and do not guarantee optimal alignments.
Finally, alignment-based methods are extremely time-
consuming. For instance, CPC and PhyloCSF took 2
days to evaluate the coding potential of 14353 IncRNAs
identified by Cabili et al. (5). This problem is getting more
attention as massive-scale RNA sequencing is increasingly
being performed. Consequently, a more accurate, robust
and faster method that does not rely on sequence align-
ment is needed to distinguish ncRNAs, especially
IncRNAs, from protein-coding genes.

Here, we present Coding-Potential Assessment Tool
(CPAT), an alignment-free program, which uses logistic
regression to distinguish between coding and noncoding
transcripts on the basis of four sequence features. CPAT is
highly accurate (0.967) and extremely efficient (10000
times faster than CPC and PhyloCSF, and 50 times
faster than PORTRAIT). CPAT needs only the sequence
or coordinate file as input, and it is straightforward to use.
We expanded the availability of CPAT to a larger scien-
tific audience via a web interface, which allows users to
submit sequences and receive the prediction results back
almost instantaneously (http://lilab.research.bcm.edu/
cpat/index.php).

MATERIALS AND METHODS

Coding-potential prediction is essentially a binary decision
problem, which makes logistic regression a suitable
approach. As an alignment-free method, all selected
features (predictor variables) were calculated directly
from the sequence. The first feature was the maximum
length of the open reading frame (ORF). ORF length is
one of the most fundamental features used to distinguish
ncRNA from messenger RNA because a long putative
ORF is unlikely to be observed by random chance in
noncoding sequences. Despite the simplicity, ORF length
has high concordance with more sophisticated discrimin-
ation methods and remains the primary criterion in almost
all coding-potential prediction methods (21). The second
feature was ORF coverage defined as the ratio of ORF to
transcript lengths. This feature also has good classification
power, and it is highly complementary to, and independ-
ent of, the ORF length (Supplementary Figures S1 and
S3). Some large bona fide ncRNAs may contain putative
long ORFs by random chance (5), and thus cannot be
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classified correctly by ORF length alone. Fortunately,
those large ncRNAs usually have much lower ORF
coverage than protein-coding RNAs (Figure 1B).

The third feature we used was the Fickett TESTCODE
score (termed ‘Fickett score’ hereafter), which is a simple
linguistic feature that distinguishes protein-coding RNA
and ncRNA according to the combinational effect of nu-
cleotide composition and codon usage bias (22). Briefly,
the Fickett score is obtained by computing four position
values and four composition values (nucleotide content)
from the DNA sequence. The position value reflects the
degree to which each base is favored in one codon position
versus another. For example, position value of A (4,,,) is
calculated as follows:

A; = Number of Asin position0, 3,6. ..
A, = Number of Asin position 1,4,7. ..
A3 = Number of Asin position2, 5,8 ...
MAX(Ay,A4,,A453)
MIN(A;,A,,43)+1

A pos —

Cpos» Gpos and T, are determined in the same way. The
percentage composition of each base is also determined.
These eight values are then converted into probabilities (p)
of coding using a lookup table provided in the original
article. Each probability is multiplied by a weight (w) for
the respective base, where the value of w reflects the per-
centage of time each parameter alone successfully predicts
coding or noncoding function for the sequences of known
function. Finally, the Fickett score is calculated as follows:

Fickett Score =

8
pivi

i=1

The Fickett score is independent of the ORF, and when
the test region is >200 nt in length (which includes most
IncRNA), this feature alone can achieve 94% sensitivity
and 97% specificity, with ‘no opinion’ on 18% of the se-
quences (22).

The fourth feature we used was hexamer usage bias
(termed ‘hexamer score’ hereafter). This may be the
most discriminating feature because of the dependence
between adjacent amino acids in proteins (23). The
hexamer score can be computed in numerous ways; here,
we used a log-likelihood ratio to measure differential
hexamer usage between coding and noncoding sequences.
For a given DNA sequence, we calculated the probability
of the sequence under the model of coding DNA and
under the model of noncoding DNA, and then we took
the logarithm of the ratio of these probabilities as
the score of coding potential. We used F (h,) (1 =0,
I,..., 4095 and F (h;) 1 =0, 1,..., 4095) to represent
in-frame hexamer frequency, calculated from coding and
noncoding training data sets (described below), respect-

ively. For a given hexamer sequence S = H;, H,, ..., H,,
1 m F(H,)
Hexc: S =— E 1
examer Score = - 2 0g<F, (Hi))
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Figure 1. Score distribution between coding (red) and noncoding (blue) transcripts for the four linguistic features selected to build the logistic
regression model; training data set containing 10000 coding and 10000 noncoding transcripts were used. (A) ORF size. (B) ORF coverage.
(C) Fickett score (TESTCODE statistic). (D) Hexamer usage bias measured by log-likelihood ratio.

Hexamer score determines the relative degree of
hexamer usage bias in a particular sequence. Positive
values indicate a coding sequence, whereas negative
values indicate a noncoding sequence.

We build a logistic regression model using these four
linguistic features as predictor variables. A x> test was
used to evaluate whether our logit model with predictors
fits the training data significantly better than the null
model, which had only an intercept. We built a
high-confidence training data set to measure the predic-
tion performance of our logit model. This data set con-
tained 10000 protein-coding transcripts selected from the
RefSeq database; all transcripts had high-quality protein
sequences annotated by the Consensus Coding Sequence
project. We also added 10000 randomly selected
noncoding transcripts from the GenCODE database. We
evaluate the model with a 10-fold cross-validation and
measured its sensitivity, specificity, accuracy, precision
and area under the curve (AUC) characteristics. The
receiver operating characteristic (ROC) curve and preci-
sion—recall (PR) curve were generated using ROCR
package (24). We also built a nonparametric two-graph
ROC curve for selecting the optimal CPAT score thresh-
old that maximizes the sensitivity and specificity of CPAT
while minimizing misclassifications.

We built an independent test data set to compare the
performance of CPAT with that of CPC, PhyloCSF and

PORTRAIT. This test set composed of 4000 high-quality
protein-coding genes (RefSeq annotated) and 4000
IncRNAs from a human IncRNA catalog (5). None of
these 8000 genes was included in the training data set
for CPAT. Assuming that all 4000 IncRNAs are truly
noncoding sequences, we could compute the sensitivity,
specificity, accuracy and precision of the algorithms to
measure their performance. PhyloCSF could not deter-
mine the coding status of 528 (13.2%) noncoding genes.
Those 528 genes were equally assigned to the true-negative
and false-positive categories. The abbreviations in the
equations below are as follows: FN, false negative; FP,
false positive; TN, true negative; TP, true positive

Senstivty — — TP+ Specificiny = — T
ensitivity = s Specificity = wmmrp
P TP+TN procis TP
I = N reciSion = ———
couracy = rprTN+FPrEN Y TP+FP
RESULTS

All four selected features were concordantly higher in
coding transcripts and lower in noncoding transcripts
(Figure 1). We plotted three major features (ORF size,
Fickett score and hexamer score) in a three-dimensional
space to evaluate their combinatorial effect (Figure 2).



e74  Nucleic Acids Research, 2013, Vol. 41, No. 6

e Coding gene
® Noncoding gene

45

35 40

3.0

OREF size (bp, log10)
25

2.0

5
A
o

02 04 06 08 10 12 14
Fickett score

Figure 2. Three-dimensional plot shows combinatorial effects of
Fickett score, hexamer score and ORF size on 10000 coding genes
(red dots) and 10000 noncoding genes (blue dots).

Coding and noncoding transcripts in our training data set
were grouped into two distinct clusters, indicating good
concordance between features. The x> test P value was
<.001 (x* = 23 548.44; degrees of freedom = 4), indicating
that the logit model as a whole fits significantly better than
the null model. Ten-fold cross-validation showed that
CPAT could achieve very high accuracy, with an AUC
of 0.9927 (Figure 3A). We also provide the PR curve
because the ROC curve can be misleading when the test
data are largely skewed (Figure 3B). We use
nonparametric two-graph ROC curves to determine an
optimal CPAT score threshold that maximizes the dis-
criminatory power (Figure 3C and D). According to
Figure 3D, a score threshold of 0.364 gave the highest
sensitivity and specificity (0.966 for both) for human data.

We compared the performance of CPAT with that of
CPC, PhyloCSF and PORTRAIT (protein-independent
support vector machine model) using an independent
test data set composed of 4000 coding genes and 4000
noncoding genes. A multiple alignment of 45 vertebrate
genomes, including that of human, was downloaded from
the UCSC (University of California, Santa Cruz) Genome
Browser and was used as the input alignment for
PhyloCSF. In general, CPAT (sensitivity: 0.96, specificity:
0.97) had greater classification power compared with all
other programs (Figure 4; Supplementary Tables S1 and
S2). Although CPC had the highest sensitivity (0.99), it
suffered from poor specificity (0.74). One possible explan-
ation is that a significant proportion of ncRNAs has a
certain degree of sequence similarity to protein-coding
genes. PhyloCSF had the least sensitivity (0.90) and the
lowest specificity (0.63). Part of the reason for these
outcomes is that nonconserved transcripts cannot be
processed by PhyloCSF. If we consider those 528
nonconserved transcripts as noncoding, the specificity
increased from 0.63 to 0.69, and the sensitivity remained
unchanged. PORTRAIT had relatively balanced sensitiv-
ity (0.96) and specificity (0.87). CPAT achieved highest
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overall accuracy (0.97) when compared with CPC (0.87),
PhyloCSF (0.76) and PORTRAIT (0.92). CPAT’s excel-
lent discriminatory power was further demonstrated by
the greatest separation between the score distributions of
coding and noncoding sequences (Figure 5). Unlike CPC,
PhyloCSF and PORTRAIT, choosing a smaller CPAT
score threshold to increase the sensitivity will not sacrifice
too much specificity.

One could argue that PhyloCSF underperformed in this
study because we used whole transcripts for testing rather
than consecutive protein-coding exons and intergenic
regions as used in its original article (17). To address
this issue, we compiled another single-exon test data set
consisting of 184 protein-coding and 278 noncoding tran-
scripts. The test results with this data set indicated that
CPAT (sensitivity: 0.962, specificity: 0.842) still outper-
formed PhyloCSF (sensitivity: 0.832, specificity: 0.588,
Supplementary Figure S2). However, when tested
on PhyloCSF’s original data set in Lin et al. (25),
PhyloCSF (sensitivity 0.91, specificity 0.99) has better per-
formance than CPAT (sensitivity 0.50, specificity 0.98).
This is reasonable because IncRNAs in our test data set
are poorly conserved, whereas IncRNAs in Lin et al. test
data set are highly conserved because they are taken from
multiple-sequence alignments of three closely related
Drosophila species. Hence, we argue that PhyloCSF
works better if the transcripts are highly conserved,
which are rare to find in IncRNAs (5,6). This also high-
lights the Achilles’ heel of the alignment-based methods
for detecting IncRNAs. In contrast, the dramatic decrease
in CPAT’s sensitivity is due to the lack of ORF informa-
tion in Lin ef al. test data set, which is largely composed of
individual exons, and not exon-length complete tran-
scripts. This, however, will not limit the application
scope of CPAT because most full-length transcripts can
be constructed at the current sequencing depth (8).

We measured the computational speed of CPAT, CPC
and PhyloCSF on a sample of 200 sequences randomly
selected from the test data set. CPAT took 0.67s to
process the data, and it was four orders of magnitudes
faster than both CPC [11945s (3.3h)] and PhyloCSF
[11737s (3.3h)]. Furthermore, computational time for
the PhyloCSF did not include the time spent preparing
multiple-alignment files for analysis. PORTRAIT was sig-
nificantly faster than CPC and PhyloCSF, and therefore
all 8000 test genes were used to evaluate its speed: CPAT
took 23.83s to process the test set, and it was 48 times
faster than PORTRAIT [1146.30s (19 min)].

DISCUSSION

A number of linguistic features characterizing coding
RNA sequences have been developed over the past 30
years. These include maximum ORF size, dinucleotide
usage, codon usage bias, hexamer usage bias, nucleotide
composition bias between codon positions and imperfect
periodicity in base occurrences (23,26). Among these
features, we selected ORF features (size and coverage)
because of their discriminatory power and ease of calcu-
lation (21). In-frame hexamer score was selected because it
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Figure 3. Performance evaluation using 10-fold cross-validation. Dashed curves represent the 10-fold cross-validation; solid curves represent the
averaged curve from 10 validation runs. (A) ROC curve. (B) PR curve. PPV = positive predictive value, TPR = true positive rate. (C) Accuracy
versus cutoff value. (D) Two-graph ROC curve is used to determine the optimum cutoff value.
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Figure 4. Performance comparison between CPAT, CPC, PhyloCSF
and PORTRAIT using ROC curves.

has the highest prediction accuracy (average of sensitivity
and specificity) as evaluated by Fickett and Tung in 1992
(23). Fickett score was selected because it simultaneously
captures the compositional bias and position asymmetry,
which are orthogonal to the ORF features. Supplementary
Figure S3 shows the performance of these individual
features as well as the combined feature set.

The combined feature set has very high sensitivity and
specificity (>0.966), leaving very little room for further
improvement.

Annotation of genomes has always been a challenging
task for biologists, and these efforts have been accelerated
by deep transcriptome sequencing. Distinguishing between
protein-coding and noncoding sequences is the first and
arguably the most crucial step in genome annotation.
Most novel transcripts are less conserved and species-
specific ncRNAs. Detecting the coding-potential of these
transcripts via alignment-based software is intractable. We
developed CPAT, a highly accurate alignment-free
method, which uses a logistic regression model to discrim-
inate between coding and noncoding transcripts using
pure linguistic features. Compared with other tools,
CPAT is more robust, markedly faster and more conveni-
ent to use. Taken together, CPAT is able to accurately
assess the coding potential of tens of thousands of tran-
scripts in real-time, and will be a valuable tool for the
rapidly growing RNA-seq community.

AVAILABILITY AND IMPLEMENTATION

Source code was implemented in C and Python and is
freely available at: http://code.google.com/p/cpat/. The
web server was implemented in PHP, MYSQL and
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Apache, with support for all major browsers: http://lilab.
research.bcm.edu/cpat/index.php.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figures 1-3.
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